15184 measured reflections

 $R_{\rm int} = 0.068$

3089 independent reflections

2723 reflections with $I > 2\sigma(I)$

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

4-(Cyanomethyl)anilinium 4-methylbenzenesulfonate monohydrate

Jin Rui Lin

Ordered Matter Science Research Center, Southeast University, Nanjing 210096, People's Republic of China Correspondence e-mail: linjinrui23@163.com

Received 17 May 2010; accepted 28 May 2010

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.007 Å; R factor = 0.072; wR factor = 0.196; data-to-parameter ratio = 15.4.

In the title salt, $C_8H_9N_2^+$, $C_7H_7O_3S^-$, H_2O , the dihedral angle between the cation and anion benzene rings is 50.1 (4)°. In the cation, the cyanomethyl group is twisted from the plane of the benzene ring $[C-C-C-N = -86 (12)^\circ]$. In the crystal, the cations, anions and water molecules are linked by $N-H \cdots O$ and $O-H \cdots O$ hydrogen bonds, forming a chain along the *c* axis.

Related literature

For phase transition materials and metal-organic coordination compounds, see: Zhang *et al.* (2009); Li *et al.* (2008); Liu *et al.* (2005). For bond-length data, see: Allen *et al.* (1987).

Experimental

Crystal data

 $\begin{array}{l} C_8H_9N_2^+ \cdot C_7H_7O_3S^- \cdot H_2O \\ M_r = 322.38 \\ \text{Tetragonal, } I\overline{4} \\ a = 22.931 \ (2) \ \text{\AA} \\ c = 5.946 \ (2) \ \text{\AA} \\ V = 3126.6 \ (11) \ \text{\AA}^3 \end{array}$

Z = 8Mo K\alpha radiation $\mu = 0.23 \text{ mm}^{-1}$ T = 293 K $0.45 \times 0.40 \times 0.25 \text{ mm}$ Data collection

Rigaku SCXmini diffractometer Absorption correction: multi-scan (*CrystalClear*; Rigaku, 2005) $T_{min} = 0.903, T_{max} = 0.945$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.072$	H-atom parameters constrained
$wR(F^2) = 0.196$	$\Delta \rho_{\rm max} = 0.54 \text{ e} \text{ Å}^{-3}$
S = 1.05	$\Delta \rho_{\rm min} = -0.24 \text{ e} \text{ Å}^{-3}$
3089 reflections	Absolute structure: Flack (1983),
200 parameters	1383 Friedel pairs
5 restraints	Flack parameter: 0.05 (16)

Table 1Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$\begin{array}{c} O4-H4D\cdots O3\\ N1-H1A\cdots O3^{i}\\ N1-H1B\cdots O1^{ii}\\ N1-H1C\cdots O4 \end{array}$	0.85 0.89 0.89 0.89	1.90 2.09 2.11 2.35	2.746 (7) 2.886 (6) 2.850 (6) 2.972 (6)	179 148 140 127

Symmetry codes: (i) x, y, z + 1; (ii) y, -x + 1, -z + 2.

Data collection: *CrystalClear* (Rigaku, 2005); cell refinement: *CrystalClear*; data reduction: *CrystalClear*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *PRPKAPPA* (Ferguson, 1999).

The author is grateful to the starter fund of Southeast University for financial support to buy the X-ray diffractometer.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: JJ2033).

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
- Ferguson, G. (1999). PRPKAPPA. University of Guelph, Canada.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Li, X. Z., Qu, Z. R. & Xiong, R. G. (2008). Chin. J. Chem. 11, 1959–1962.
- Liu, Y., Lu, Y., Prashad, M., Repic, O. & Blacklock, T. (2005). Adv. Synth. Catal. 347, 217–219.
- Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Zhang, W., Chen, L. Z., Xiong, R. G., Nakamura, T. & Huang, S. D. (2009). J. Am. Chem. Soc. 131, 12544–12545.

supplementary materials

Acta Cryst. (2010). E66, 01557 [doi:10.1107/S1600536810020180]

4-(Cyanomethyl)anilinium 4-methylbenzenesulfonate monohydrate

J. R. Lin

Comment

The title compound, (I), is a continuation of our study of phase transition materials, which include organic ligands (Li *et al.*, 2008), metal-organic coordination compounds (Zhang*et al.*, 2009) and the dielectric constant of 4-(cyanomethyl)anilinium 4-methylbenzenesulfonate as a function of temperature. Our study indicating that the permittivity is temperature-independent (dielectric constant equals 7.6 to 14.1), suggests that there may be no distinct phase transition in (I) within the measured temperature range.

The asymmetric unit of the title compound (Fig.1), contains 4-(cyanomethyl)anilinium cations, 4-methylbenzenesulfonate anions and water molecules in the stoichiometric ratio of 1:1:1. The dihedral angle between the two cation-anion benzene rings is 50.1 (4)°. In the cation, the cyanomethyl group is twisted from the plane of the benzene ring (C4/C7/C8/N2 = -86 (12)°) and the methyl group is planar with the ring. In the anion, both the sylfonyl and methyl groups are planar with the benxene ring. Bond distances (Allen *et al.*, 1987) and angles are in normal ranges. In the crystal structure (Fig.2), cations, anions and water molecules are linked by intermolecular N—H···O and O—H···O hydrogen bonds, forming a one-dimensional chain along the *c* axis, assisting crystal packing.

Experimental

2-(4-aminophenyl)acetonitrile was prepared from 2-(4-nitrophenyl)acetonitrile according to the reported method (Liu Y *et al.*, 2005). Single crystals of 4-(cyanomethyl)anilinium 4-methylbenzenesulfonate were prepared by slow evaporation at room temperature of an equuimolar methanol-water solution for 10 h.

Refinement

All the hydrogen atoms could have been discerned in the difference electron density map, nevertheless, all the H atoms attached to the carbon atoms were constrained in a riding motion approximation. C_{aryl} —H = 0.93 Å, with $U_{iso}(H) = 1.2U_{eq}(C)$. C_{methyl} —H = 0.96 Å, with $U_{iso}(H)=1.5U_{eq}(C)$. N—H = 0.89 Å, $U_{iso}(H)=1.5U_{eq}(N)$. The hydroxyl hydrogen were placed at ideal positions and refined using a 'rotating' model for hydroxyl H atom with $U_{iso}(H) = 1.5 U_{eq}(O)$.

Figures

Fig. 1. The molecular structure of the title compound, showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

Fig. 2. A view of the packing of the title compound, with stacking along the c axis. Dashed lines indicate N—H…O and O—H…O hydrogen bonds.

4-(Cyanomethyl)anilinium 4-methylbenzenesulfonate monohydrate

Crystal data

$C_8H_9N_2^+ \cdot C_7H_7O_3S^- \cdot H_2O$	$D_{\rm x} = 1.370 {\rm ~Mg~m}^{-3}$
$M_r = 322.38$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Tetragonal, 14	Cell parameters from 5655 reflections
Hall symbol: I -4	$\theta = 3.5 - 27.5^{\circ}$
a = 22.931 (2) Å	$\mu = 0.23 \text{ mm}^{-1}$
c = 5.946 (2) Å	<i>T</i> = 293 K
$V = 3126.6 (11) \text{ Å}^3$	Prism, orange
Z = 8	$0.45\times0.40\times0.25~mm$
F(000) = 1360	

Data collection

Rigaku SCXmini diffractometer	3089 independent reflections
Radiation source: fine-focus sealed tube	2723 reflections with $I > 2\sigma(I)$
graphite	$R_{\text{int}} = 0.068$
Detector resolution: 13.6612 pixels mm ⁻¹	$\theta_{\text{max}} = 26.0^\circ, \ \theta_{\text{min}} = 3.5^\circ$
CCD_Profile_fitting scans	$h = -28 \rightarrow 28$
Absorption correction: multi-scan (<i>CrystalClear</i> ; Rigaku, 2005)	$k = -28 \rightarrow 28$
$T_{\min} = 0.903, T_{\max} = 0.945$	$l = -7 \rightarrow 7$
15184 measured reflections	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.072$	H-atom parameters constrained
$wR(F^2) = 0.196$	$w = 1/[\sigma^2(F_o^2) + (0.120P)^2 + 1.4624P]$ where $P = (F_o^2 + 2F_c^2)/3$
S = 1.05	$(\Delta/\sigma)_{\rm max} = 0.001$
3089 reflections	$\Delta \rho_{max} = 0.54 \text{ e} \text{ Å}^{-3}$
200 parameters	$\Delta \rho_{\rm min} = -0.24 \text{ e } \text{\AA}^{-3}$

5 restraints

Absolute structure: Flack (1983), 1383 Friedel pairs

Primary atom site location: structure-invariant direct Flack parameter: 0.05 (16) methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	у	Ζ	$U_{\rm iso}*/U_{\rm eq}$
C9	0.80554 (19)	0.68688 (19)	0.6159 (9)	0.0451 (10)
C10	0.7993 (2)	0.6601 (2)	0.4099 (9)	0.0509 (12)
H10A	0.8321	0.6557	0.3195	0.061*
C11	0.74716 (19)	0.6397 (2)	0.3328 (8)	0.0444 (11)
H11A	0.7449	0.6211	0.1942	0.053*
C12	0.69775 (19)	0.64693 (18)	0.4622 (7)	0.0368 (9)
C13	0.7012 (2)	0.6746 (2)	0.6699 (8)	0.0451 (11)
H13A	0.6680	0.6802	0.7575	0.054*
C14	0.7554 (2)	0.6937 (2)	0.7428 (9)	0.0486 (11)
H14A	0.7581	0.7118	0.8823	0.058*
C15	0.8629 (3)	0.7090 (3)	0.7022 (12)	0.0718 (17)
H15A	0.8929	0.7011	0.5937	0.086*
H15B	0.8722	0.6898	0.8412	0.086*
H15C	0.8604	0.7503	0.7269	0.086*
01	0.58469 (14)	0.65351 (15)	0.4733 (6)	0.0567 (10)
02	0.62991 (15)	0.62234 (19)	0.1289 (6)	0.0679 (10)
O3	0.62786 (15)	0.55881 (15)	0.4448 (7)	0.0608 (10)
O4	0.5601 (2)	0.5210 (3)	0.7965 (10)	0.112 (2)
H4D	0.5808	0.5324	0.6864	0.168*
H4B	0.5707	0.5387	0.9153	0.168*
S1	0.62993 (5)	0.61860 (5)	0.37106 (18)	0.0416 (3)
C1	0.7116 (2)	0.49056 (19)	1.0648 (8)	0.0409 (10)
C2	0.7262 (2)	0.51689 (19)	0.8664 (9)	0.0468 (10)
H2B	0.6985	0.5227	0.7546	0.056*
C3	0.7830 (2)	0.5346 (2)	0.8365 (9)	0.0512 (12)
H3B	0.7934	0.5536	0.7042	0.061*
C4	0.8251 (2)	0.5248 (2)	0.9986 (9)	0.0451 (11)
C5	0.8087 (2)	0.4970 (2)	1.1943 (9)	0.0499 (12)
H5A	0.8365	0.4896	1.3044	0.060*
C6	0.7516 (2)	0.4798 (2)	1.2302 (8)	0.0495 (11)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

supplementary materials

H6A	0.7407	0.4614	1.3631	0.059*
C7	0.8871 (2)	0.5456 (3)	0.9678 (10)	0.0616 (15)
H7A	0.8908	0.5843	1.0322	0.074*
H7B	0.9130	0.5199	1.0501	0.074*
C8	0.9054 (3)	0.5476 (3)	0.7358 (13)	0.0763 (18)
N1	0.65068 (16)	0.47274 (18)	1.1017 (8)	0.0531 (10)
H1A	0.6316	0.5013	1.1716	0.080*
H1B	0.6499	0.4407	1.1861	0.080*
H1C	0.6338	0.4655	0.9699	0.080*
N2	0.9217 (3)	0.5462 (3)	0.5409 (11)	0.0937 (19)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C9	0.045 (2)	0.037 (2)	0.053 (3)	-0.0032 (18)	0.004 (2)	0.001 (2)
C10	0.043 (2)	0.056 (3)	0.054 (3)	0.001 (2)	0.015 (2)	-0.003 (2)
C11	0.048 (3)	0.045 (2)	0.041 (2)	0.001 (2)	0.009 (2)	-0.006 (2)
C12	0.043 (2)	0.031 (2)	0.036 (2)	0.0017 (18)	0.0014 (18)	0.0012 (17)
C13	0.050 (3)	0.046 (2)	0.039 (3)	0.004 (2)	0.005 (2)	-0.007 (2)
C14	0.056 (3)	0.043 (2)	0.048 (3)	0.000 (2)	0.005 (2)	-0.003 (2)
C15	0.056 (3)	0.069 (4)	0.091 (5)	-0.015 (3)	-0.005 (3)	-0.005 (3)
01	0.0433 (18)	0.059 (2)	0.068 (2)	0.0101 (16)	0.0096 (17)	-0.0105 (18)
O2	0.051 (2)	0.111 (3)	0.0417 (18)	0.009 (2)	0.0004 (18)	-0.007 (2)
O3	0.059 (2)	0.0404 (18)	0.083 (3)	-0.0032 (16)	-0.0072 (19)	0.0012 (17)
O4	0.107 (4)	0.118 (4)	0.110 (5)	0.026 (3)	0.014 (3)	0.029 (4)
S1	0.0416 (6)	0.0415 (6)	0.0416 (5)	0.0043 (5)	0.0002 (5)	-0.0030 (5)
C1	0.041 (2)	0.037 (2)	0.044 (3)	0.0030 (18)	0.0073 (19)	-0.0069 (19)
C2	0.052 (3)	0.042 (2)	0.047 (3)	0.001 (2)	-0.005 (2)	0.000(2)
C3	0.063 (3)	0.045 (3)	0.046 (3)	-0.003 (2)	0.008 (2)	0.001 (2)
C4	0.040 (2)	0.045 (3)	0.050 (3)	-0.0037 (19)	0.001 (2)	-0.012 (2)
C5	0.049 (3)	0.053 (3)	0.048 (3)	0.003 (2)	-0.005 (2)	-0.008 (2)
C6	0.060 (3)	0.052 (3)	0.036 (2)	0.000 (2)	-0.001 (2)	0.006 (2)
C7	0.052 (3)	0.070 (4)	0.062 (3)	-0.006 (3)	0.005 (3)	-0.027 (3)
C8	0.056 (4)	0.095 (5)	0.078 (5)	-0.012 (3)	0.001 (3)	0.003 (4)
N1	0.042 (2)	0.058 (2)	0.059 (3)	-0.0061 (18)	0.005 (2)	-0.009 (2)
N2	0.077 (4)	0.124 (5)	0.080 (4)	-0.016 (4)	-0.012 (3)	0.005 (4)

Geometric parameters (Å, °)

C9—C10	1.378 (7)	C1—C2	1.367 (7)
C9—C14	1.384 (7)	C1—C6	1.367 (7)
C9—C15	1.500 (7)	C1—N1	1.473 (6)
C10-C11	1.363 (7)	C2—C3	1.376 (7)
C10—H10A	0.9300	C2—H2B	0.9300
C11—C12	1.379 (6)	C3—C4	1.383 (7)
C11—H11A	0.9300	С3—НЗВ	0.9300
C12—C13	1.391 (6)	C4—C5	1.380 (7)
C12—S1	1.771 (4)	C4—C7	1.511 (7)
C13—C14	1.388 (7)	C5—C6	1.384 (7)

C13—H13A	0.9300	С5—Н5А	0.9300
C14—H14A	0.9300	С6—Н6А	0.9300
C15—H15A	0.9600	С7—С8	1.442 (9)
C15—H15B	0.9600	С7—Н7А	0.9700
C15—H15C	0.9600	С7—Н7В	0.9700
O1—S1	1.445 (3)	C8—N2	1.218 (9)
O2—S1	1.443 (4)	N1—H1A	0.8900
O3—S1	1.440 (4)	N1—H1B	0.8900
O4—H4D	0.8500	N1—H1C	0.8900
O4—H4B	0.8499		
C10—C9—C14	116.6 (4)	C2—C1—C6	122.5 (4)
C10-C9-C15	123.1 (5)	C2—C1—N1	118.9 (4)
C14—C9—C15	120.2 (5)	C6—C1—N1	118.6 (4)
C11—C10—C9	122.9 (4)	C1—C2—C3	118.3 (5)
C11—C10—H10A	118.5	C1—C2—H2B	120.9
С9—С10—Н10А	118.5	С3—С2—Н2В	120.9
C10-C11-C12	119.4 (5)	C2—C3—C4	121.5 (5)
C10-C11-H11A	120.3	С2—С3—Н3В	119.3
C12—C11—H11A	120.3	С4—С3—Н3В	119.3
C11—C12—C13	120.3 (4)	C3—C4—C5	118.2 (4)
C11-C12-S1	120.4 (3)	C3—C4—C7	121.4 (5)
C13-C12-S1	119.3 (3)	C5—C4—C7	120.4 (5)
C14—C13—C12	118.2 (4)	C6—C5—C4	121.4 (5)
C14—C13—H13A	120.9	С6—С5—Н5А	119.3
C12—C13—H13A	120.9	С4—С5—Н5А	119.3
C9-C14-C13	122.6 (5)	C1 - C6 - C5	118.1 (4)
C9—C14—H14A	118 7	C1—C6—H6A	120.9
C13—C14—H14A	118.7	С5—С6—Н6А	120.9
C9—C15—H15A	109.5	C8 - C7 - C4	113.6(5)
C9—C15—H15B	109.5	C8—C7—H7A	108.9
H15A—C15—H15B	109.5	С4—С7—Н7А	108.9
C9—C15—H15C	109.5	С8—С7—Н7В	108.9
H_{15A} $-C_{15}$ $-H_{15C}$	109.5	C4—C7—H7B	108.9
H15B-C15-H15C	109.5	H7A - C7 - H7B	107.7
H4D—O4—H4B	109.5	N_{2} C_{8} C_{7}	176 5 (9)
03 = 81 = 02	111 1 (3)	C1 - N1 - H1A	109 5
03 - 81 - 01	1121(2)	C1 - N1 - H1B	109.5
02 - 81 - 01	112.8 (2)	H1A - N1 - H1B	109.5
03 - 81 - C12	106.6 (2)	C1 - N1 - H1C	109.5
02 - 81 - C12	106.5(2)	H1A - N1 - H1C	109.5
01 - 81 - C12	107.4(2)	H1B—N1—H1C	109.5
$C_{14} - C_{9} - C_{10} - C_{11}$	-1.5(7)	C_{13} C_{12} S_{1} C_{12}	28.4(4)
$C_{15} = C_{9} = C_{10} = C_{11}$	1.9 (7)	C6-C1-C2-C3	-20(7)
$C_{10} = C_{10} = C_{11} = C_{12}$	15(8)	N1 - C1 - C2 - C3	2.0(7) 178 4 (4)
C10-C11-C12-C13	-0.2(7)	C1 - C2 - C3 - C4	19(7)
C10-C11-C12-S1	-1777(4)	$C_{2}^{2} = C_{3}^{2} = C_{4}^{4} = C_{5}^{5}$	-0.5(7)
$C_{11} - C_{12} - C_{13} - C_{14}$	-09(7)	$C_2 = C_3 = C_4 = C_7$	-1785(5)
S1_C12_C13_C14	176.7 (4)	$C_2 = C_3 = C_4 = C_5 = C_5$	-0.8(7)
01 012 013 017	1,0.1 (7)		0.0(7)

supplementary materials

C10—C9—C14—C13	0.3 (7)	C7—C4—C5—C6	177.2 (5)
C15—C9—C14—C13	179.3 (5)	C2—C1—C6—C5	0.8 (7)
C12—C13—C14—C9	0.8 (7)	N1—C1—C6—C5	-179.6 (4)
C11—C12—S1—O3	85.7 (4)	C4—C5—C6—C1	0.7 (7)
C13-C12-S1-O3	-91.8 (4)	C3—C4—C7—C8	-30.1 (8)
C11—C12—S1—O2	-33.0 (4)	C5—C4—C7—C8	152.0 (6)
C13—C12—S1—O2	149.5 (4)	C4—C7—C8—N2	-86 (12)
C11—C12—S1—O1	-154.0 (4)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	$D\!\!-\!\!\mathrm{H}^{\ldots}\!A$
O4—H4D…O3	0.85	1.90	2.746 (7)	179.
N1—H1A····O3 ⁱ	0.89	2.09	2.886 (6)	148.
N1—H1B…O1 ⁱⁱ	0.89	2.11	2.850 (6)	140.
N1—H1C···O4	0.89	2.35	2.972 (6)	127.
Symmetry codes: (i) $x, y, z+1$; (ii) $y, -x+1, -z+2$.				

